智能自動化技術為儀器儀表與測量的相關領域的應用開辟了廣闊的前景。運用智能化軟硬件,使每臺儀器或儀表能隨時準確地分析、處理當前的和以前的數(shù)據(jù)信息,恰當?shù)貜牡汀⒅?、高不同層次上對測量過程進行抽象,以提高現(xiàn)有測量系統(tǒng)的性能和效率,擴展傳統(tǒng)測量系統(tǒng)的功能,如運用神經(jīng)網(wǎng)絡、遺傳算法、進化計算、混沌控制等智能技術,使儀器儀表實現(xiàn)高速、高效、多功能、高機動靈活等性能。
其次,也可在分散系統(tǒng)的不同儀器儀表中采用微處理器、微控制器等微型芯片技術,設計模糊控制程序,設置各種測量數(shù)據(jù)的臨界值,運用模糊規(guī)則的模糊推理技術,對事物的各種模糊關系進行各種類型的模糊決策。其優(yōu)勢在于不必建立被控對象的數(shù)學模型,也不需大量的測試數(shù)據(jù),只需根據(jù)經(jīng)驗,總結合適的控制規(guī)則,應用芯片的離線計算、現(xiàn)場調(diào)試,按我們的需要和精確度產(chǎn)生準確的分析和準時的控制動作。
特別是在傳感器測量中,智能自動化技術的應用更為廣泛。用軟件實現(xiàn)信號濾波,如快速傅立葉變換、短時傅立葉變換、小波變換等技術,是簡化硬件,提高信噪比,改善傳感器動態(tài)特性的有效途徑,但需要確定傳感器的動態(tài)數(shù)學模型,而且高階濾波器的實時性較差。運用神經(jīng)網(wǎng)絡技術,可實現(xiàn)高性能的自相關濾波和自適應濾波。充分利用人工神經(jīng)網(wǎng)絡技術強有力的自學習、自適應、自組織能力,聯(lián)想、記憶功能以及對非線性復雜關系的輸入、輸出間的黑箱映射特性,無論在適用性和快速實時性等各方面都將大大超過復雜函數(shù)式,可充分利用多傳感器資源,綜合獲取更準確、更可信的結論。其中實時與非實時的、快變與緩變的、模糊和確定性的數(shù)據(jù)信息,可能相互支持,也可能相互矛盾,此時,對象特征的提取、融合,直至最終決策,作出正確的判斷,將成為難點。于是神經(jīng)網(wǎng)絡或模糊邏輯將成為最值得選用的方法。例如,氣體傳感陣列用于混合氣體識別,在信號處理方法上可采用自組織映射網(wǎng)絡和BP網(wǎng)絡相結合,先進行分類,再識別組分,將傳統(tǒng)方法的全程擬合轉(zhuǎn)化為分段擬合,以降低算法的復雜度,提高識別率。又如,食品味覺信號的檢測和識別的難度,曾一度是研究與開發(fā)單位的主要障礙所在。如今可利用小波變換進行數(shù)據(jù)壓縮和特征提取,然后將數(shù)據(jù)輸入用遺傳算法訓練過的模糊神經(jīng)網(wǎng)絡,則大大提高了對簡單復合味的識別率。再如,在布匹面料質(zhì)量的評定,柔性*作手對觸覺信號的處理,機器的故障診斷領域,智能自動化技術也都取得了大量的成功實例。